680 research outputs found

    Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials

    Get PDF
    Beneficial microorganisms (Clonostachys rosea IK726, Pseudomonas chlororaphis MA342, Pseudomonas fluorescens CHA0, Trichoderma harzianum T22 and Trichoderma viride S17a) were successfully applied to carrot and onion seed during a commercial drum priming process. Applied microorganisms were recovered above the target of at least 1 × 105 cfu g−1 seed following subsequent application of pesticides to the seed according to standard commercial practices of film-coating carrot and pelletting onion seed. Two glasshouse experiments consistently showed that priming improved emergence of carrot seed and that C. rosea IK726 further improved emergence time. Priming improved emergence of onion seed in one glasshouse experiment, but had an unexpected negative effect on emergence in the second experiment, possibly due to the proliferation of an unidentified indigenous microorganism during priming, becoming deleterious in high numbers. In this experiment, the application of beneficial microorganisms during priming negated this effect and significantly improved emergence. For each crop, a series of field trials was also carried out over three years, at two different sites each year. Although some positive effects of different seed treatments were seen on emergence or yield in individual field trials, no consistent effects were found for primed or microorganism-treated seed across all sites and years. However, a combined analysis of data for all years and sites indicated that pesticide application did consistently improve emergence and yield for both carrot and onion. This is the first comprehensive study assessing glasshouse and field performance of carrot and onion seed primed with beneficial microorganisms during a commercial process of drum priming in the UK

    Editors' Note

    Get PDF
    Editors' Note for the Proceedings of the 2020 Annual Meeting on Phonology (AMP 2020), held at the University of California, Santa Cruz in September 2020

    Cardiomyocyte growth and sarcomerogenesis at the intercalated disc

    Get PDF
    Cardiomyocytes grow during heart maturation or disease-related cardiac remodeling. We present evidence that the intercalated disc (ID) is integral to both longitudinal and lateral growth: increases in width are accommodated by lateral extension of the plicate tread regions and increases in length by sarcomere insertion within the ID. At the margin between myofibril and the folded membrane of the ID lies a transitional junction through which the thin filaments from the last sarcomere run to the ID membrane and it has been suggested that this junction acts as a proto Z-disc for sarcomere addition. In support of this hypothesis, we have investigated the ultrastructure of the ID in mouse hearts from control and dilated cardiomyopathy (DCM) models, the MLP-null and a cardiac-specific β-catenin mutant, cΔex3, as well as in human left ventricle from normal and DCM samples. We find that the ID amplitude can vary tenfold from 0.2 μm up to a maximum of ~2 μm allowing gradual expansion during heart growth. At the greatest amplitude, equivalent to a sarcomere length, A-bands and thick filaments are found within the ID membrane loops together with a Z-disc, which develops at the transitional junction position. Here, also, the tops of the membrane folds, which are rich in αII spectrin, become enlarged and associated with junctional sarcoplasmic reticulum. Systematically larger ID amplitudes are found in DCM samples. Other morphological differences between mouse DCM and normal hearts suggest that sarcomere inclusion is compromised in the diseased hearts

    Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey

    Full text link
    The rotational spectrum of the higher-energy trans conformational isomer of methyl formate has been assigned for the first time using several pulsed-jet Fourier transform microwave spectrometers in the 6-60 GHz frequency range. This species has also been sought toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. We detect seven absorption features in the survey that coincide with laboratory transitions of trans-methyl formate, from which we derive a column density of 3.1 (+2.6, -1.2) \times 10^13 cm-2 and a rotational temperature of 7.6 \pm 1.5 K. This excitation temperature is significantly lower than that of the more stable cis conformer in the same source but is consistent with that of other complex molecular species recently detected in Sgr B2(N). The difference in the rotational temperatures of the two conformers suggests that they have different spatial distributions in this source. As the abundance of trans-methyl formate is far higher than would be expected if the cis and trans conformers are in thermodynamic equilibrium, processes that could preferentially form trans-methyl formate in this region are discussed. We also discuss measurements that could be performed to make this detection more certain. This manuscript demonstrates how publicly available broadband radio astronomical surveys of chemically rich molecular clouds can be used in conjunction with laboratory rotational spectroscopy to search for new molecules in the interstellar medium.Comment: 40 pages, 7 figures, 4 tables; accepted for publication in Ap

    Synthesis of methacrylate-terminated block copolymers with reduced transesterification by controlled ring-opening polymerization

    Get PDF
    This work presents a robust method to achieve the synthesis of low molecular weight polyesters 26 via ring-opening polymerization (ROP) initiated by 2-hydroxyethyl-methacrylate (HEMA) 27 when using triazabicyclodecene (TBD) as catalyst. The effect that the HEMA:TBD ratio has 28 upon the final reaction rate and final polymer molecular architecture is discussed. The optimum 29 HEMA:TBD ratio and reaction conditions required to minimize competing transesterification 30 reactions were determined, in order to synthesize successfully the target ROP macromonomer 31 species containing only a single 2-methacryloyloxyethyl end-group. Additionally, to confirm 32 the terminal end-group fidelity of the product macromonomers and confirm TBD utility for 33 block copolymer manufacture, a small series of di-block polyesters were synthesized using 34 TBD and shown to exhibit good control over the final polymer structure whilst negating the 35 side transesterification reactions, irrespective of the monomers used

    Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline

    Get PDF
    Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality

    Predictive response-relevant clustering of expression data provides insights into disease processes

    Get PDF
    This article describes and illustrates a novel method of microarray data analysis that couples model-based clustering and binary classification to form clusters of ;response-relevant' genes; that is, genes that are informative when discriminating between the different values of the response. Predictions are subsequently made using an appropriate statistical summary of each gene cluster, which we call the ;meta-covariate' representation of the cluster, in a probit regression model. We first illustrate this method by analysing a leukaemia expression dataset, before focusing closely on the meta-covariate analysis of a renal gene expression dataset in a rat model of salt-sensitive hypertension. We explore the biological insights provided by our analysis of these data. In particular, we identify a highly influential cluster of 13 genes-including three transcription factors (Arntl, Bhlhe41 and Npas2)-that is implicated as being protective against hypertension in response to increased dietary sodium. Functional and canonical pathway analysis of this cluster using Ingenuity Pathway Analysis implicated transcriptional activation and circadian rhythm signalling, respectively. Although we illustrate our method using only expression data, the method is applicable to any high-dimensional datasets
    corecore